Моторы с внешним ротором не требуют редкоземельных магнитов

EC-motor

Рис.1

Электродвигатели с постоянным возбуждением основаны на постоянных магнитах в связи с их функцией. Особенно сильные магниты могут быть произведены в процессе спекания из соединений с редкоземельными материалами, такими, как кобальт и самарий или неодим, железо и бор. После искусственного дефицита этих материалов и, в результате, резкого роста затрат, цены сейчас снова падают. Однако, так как в настоящее время по-прежнему Китай контролирует большую часть поставляемого количества, необходимо продолжать считаться с резкими колебаниями цены. Кроме того, их наличие не гарантируется.

При этом, в будущем, затраты на редкоземельные магниты будут пустяковыми, но трудными для расчета производителями электродвигателей. Поэтому электродвигатели с постоянным возбуждением, которые являются особенно энергосберегающими, часто рассматриваются как дорогие в пользовательских кругах. Это не обязательно так, однако, каждый электрический привод с высокой эффективностью действительно зависит от мощных редкоземельных магнитов. ЕС-моторы с внешним ротором, например, которые используются в энергосберегающих вентиляторах, обходятся «простыми», экономически эффективными и, прежде всего, легко доступными ферритовыми магнитами, и они делают это с эффективностью более 90% в некоторых случаях.

Что такое ЕС мотор?
Поскольку термины в приводной технике не обязательно всегда используются с ясными и недвусмысленными определениям, имеет смысл во-первых выяснить, какие двигатели на самом деле имеются в виду в связи с обсуждением редких земель. Будь это бесщёточный привод постоянного тока (BLDC двигатель), BLPM двигатель или EC двигатель, это всегда означает, что это синхронный двигатель с постоянным возбуждением, который работает с силовой электроникой — питаемой от бытовой электросети или с источником питания постоянного тока. Так называемые BLDC/BLPM двигатели обычно работают с прямоугольными токами (блочная коммутация). ЕС-моторы могут работать с прямоугольными токами, а также с синусоидальными токами (синусоидальная коммутация). В последнем случае достигается значительное снижение уровня шума по сравнению с блочной коммутацией. Конструкция с синусоидальными токами соответствует классическому синхронному двигателю. Основные функции ЕС мотора легко понятны (рис. 1):

Ротор с постоянными магнитами вращается синхронно с вращающимся полем статора. В отличие от питающегося от сети асинхронного двигателя, частота вращения ротора не связана автоматически с частотой напряжения питания, но предопределена тем, что называется электронной коммутацией. Поэтому работа EC двигателя всегда требует дополнительной электроники. Именно она определяет угловую скорость вращающегося магнитного поля, в котором синхронно с ним вращается ротор. Корреляция между напряжением и скоростью, а также между током и моментом в основном линейная. Следовательно, в отношении его характеристики крутящий момент/скорость, двигатель работает как двигатель с параллельным возбуждением (DC shunt motor). Для определения положения ротора, либо в мотор встраиваются датчики положения ротора, либо электронный коммутатор измеряет положение ротора без датчиков через его параметры — напряжение на роторе или ток двигателя. Холостой ход зависит от приложенного напряжения и числа витков обмотки статора.

Significantly higher efficiency than comparable asynchronous  motors.

Рис.2

Таким образом, в пределах, которые определяются физическими параметрами (например, выходная мощность, крутящий момент, температура и т.д.), может быть реализована без проскальзывания почти произвольная рабочая скорость (синхронная с вращающимся магнитным полем статора), которая даже может быть выше частоты сети, в отличие от асинхронного двигателя.
Например, если работает вентилятор с EC двигателем, скорость может быть всегда адаптирована в соответствии с требованиями системы вентиляции или процесса. Следовательно, при частичной нагрузке потребление энергии может быть значительно уменьшено, потому что требуемая мощность вентилятора изменяется как третья степень от скорости. Помимо этого, ЕС двигатели имеют существенно более высокую эффективность (рис. 2), чем двигатели переменного тока, как при частичной, так и при полной нагрузках, и они обычно имеют меньшие размеры. Причиной этого является то, что EC двигатели не требуют тока намагничивания, текущие потери тепла ротора исчезают, и возможно реализовать специальную компоновку обмотки (single-tooth winding / toothcoil winding). Даже если обсуждение редкоземельных магнитов не в пользу этих двигателей, они просто лучший выбор с точки зрения энергоэффективности.

Динамические требования определяют выбор магнитов
С ЕС-моторами вас не вынуждают полагаться на мощные редкоземельные магниты, потому что их превосходные магнитные качества действительно необходимы только для очень динамичных сервоприводов, таких, как те, которые используются в робототехнике. С одной стороны, здесь необходимы компактные размеры, с другой стороны, однако, чтобы минимизировать момент инерции, требуется минимально возможная масса ротора. Эти требования могут быть достигнуты только с высокой остаточной намагниченностью и высокой коэрцитивностью редкоземельных магнитов. Поэтому сегодня производители таких сервоприводов в первую очередь сосредоточили внимание на сокращении необходимой массы и высоты магнита с помощью сложных оптимизаций, и они уже достигли здесь очень значительной экономии.

Специалисты по двигателям и вентиляторам компании ebm-papst Mulfingen со своими вентиляторами, которые оснащены энергосберегающими GreenTech EC двигателями, даже не сталкивались с этой проблемой. Несмотря на свою высокую эффективность, эти приводы сделаны без редкоземельных магнитов. Ключевым для этого является принцип двигателя с внешним ротором:

Ротор находится на внешней стороне

Ротор находится на внешней стороне

Рис.3

Здесь часть двигателя находится в покое, статор расположен внутри и окружен частью, которая движется, ротором (рис.3). Расположенный снаружи ротор вращается вокруг внутреннего статора. При таком расположении, мотор с внешним ротором может достичь более высокого крутящего момента, чем с внутренним ротором при той же длине модуля, той же самой магнитной системе и той же толщине магнита. При удачном использовании степеней свободы в области вентилятора, двигатель с внешним ротором с использованием магнитотвердых ферритовых магнитов может достичь крутящего момента и эффективности, которых двигатель с внутренним ротором может добиться только с редкоземельными магнитами с ограниченными степенями свободы (объём, масса). В отличие от сервоприводов, вентиляторы не требуют высокой динамики. Совсем наоборот; определенный момент инерции очень желателен для вентиляторов, чтобы иметь плавный запуск и определённую динамику. Поэтому можно без дальнейшей суеты отказаться от редкоземельных магнитов и использовать ферритовые магниты, которые не только значительно более рентабельным, но и имеют стабильные цены на рынке из-за их доступности.

Energy-efficient fans whose motorsmake do without rare earth magnets.

Рис.4

Конструкция двигателя с внешним ротором является выгодной для вентиляторов также и в другом отношении, а именно, осевые или центробежные колёса могут быть установлены на вращающихся роторах, непосредственно на «корпусе» двигателя (рис. 4). Компактные размеры, особенно в осевом направлении, являются следствием этого и охлаждение становится проще, когда двигатель может использовать воздух, вытесняемый вентилятором, для собственного охлаждения. Конструкция с синусоидальной коммутацией также обеспечивает особенно низкий уровень шума. Следовательно, энергоэффективные GreenTech ЕС-вентиляторы совершенно не зависят от рыночной тенденции редкоземельных магнитов.

Источник: http://www.ebmpapst.com.cn